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ABSTRACT

Let a given set be endowed with a preference preordering, and

consider the problem of finding a solution to the differential inclusion
x(t) € S(x(t))

which remains in the given set and evolves monotonically with respect
to the preordering. We give sufficient conditions for the existence of
such a trajectory, couched in terms of a notion of tangency developed by
Clarke. No smoothness or convexity is involved in the construction,

which uses techniques of Filippov.

/

N
AMS (MOS) Subject Classifications: Primary 49E10; Secondary 34HOS5, Ens 'I

34A10 D3¢ 8yt
UNANHOUHCED
Key Words: invariant trajectory, monotone trajectory, preference JETIFICA0N .........
ordering, existence, differential inclusion, generalized SR o
gradients, generalized tangent cone SRR I
M.'Mﬂﬂi:

Work Unit Number 1 (Applied Analysis)

WTRIBUT

—

m“:-h-ié\inl(. ans

P

TDepartment of Mathematics, University of British Columbia, Vancouver,
B.C., Canada V6T 1WS5.

IMathematiques de la Decision, Universite de Paris IX, 75775 Paris ,
Cedex 16, France.

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.




MONOTONE INVARIANT SOLUTIONS TO DIFFERENTIAL INCLUSIONS

Frank H. Clarke' and J.-P. Aubin?

1. Statement of the problem

Let X be a compact subset of Rn, S a multifunction (set-valued
function) from X into Rrl with non-empty compact values. We regard
X as the state set of a dynamical system and S(x) as the set of
feasible velocities of the system when its state is x. We introduce a
preordering ''y » x'"' (y is better than x) on X (i.e., a relation which
is both reflexive and transitive).

Let [0,T] be any finite interval (T >0). We say that an
absolutely continuous function x from [0,T] into R® is a ""monotone

invariant trajectory for S starting at xo e X' if

(- i) %)t_( ¢ S(x(t)) for almostall t in [0,T]
i) x(0) = x
TR B 2

iii) x(t) € X forall te [0,T]

L iv) if t>s, x(t) is better than x(s) .
Our main result which we state in this section, gives reasonable

sufficient conditions implying the existence of at least one monotone

invariant trajectory. In §2 we discuss a notion of tangency for arbitrary
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B.C., Canada V6T 1W5,

IMatht’ematiques de la Décision, Universite de Paris IX, 75775 Paris,
Cedex 16, France.
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L S

closed sets [ 5] which is central in our results, while § 3 is devoted
to the proof of the main theorem. We define the set
P(x) = {y ¢ X such that y » x}

of elements y better than x. The multifunction P satisfies the
properties:

i) ¥x € X, x ¢ P(x)
(1.2)

i1} ¥x ¢ X, ¥y ¢ P(z), Ply) T P(x) .
(Conversely, if P is a multifunction from X to X satisfying (20
the relation y » x defined by y ¢ P(x) is a preordering on X.) We
recall that P is said to be Lipschitz if and only if there exists L >0
such that P(x) C P(y) + Lix - y“B, where B is the unit ball. We
recall also that S is upper (resp. lower) semicontinuous if for any
e > 0, there exists a neighborhood Ne(x) of x such that,

Yy € Ne(x), S(y) € S(x) + eB (resp. S(x) < S(y) + €B) .
We will define in the next section the tangent cone T(P(x);x)

to the set P(x) at x.

Theorem 1. Let us assume that P satisfies (1.2), that X is compact,

that the images S(x) and P(x) are non-empty and compact and that

i) S is continuous
ii) P is Lipschitz.
Let us suppose also that

(1.3) ¥x € X, S(x) ¢ T(P(x);x) .




[

Then, for any X, € X, Vg S(xo), and T >0, there exists a monotone

invariant trajectory starting at x0 and satisfying

dx

) e (0) = v

0

ii) gf is regulated (i.e., is a uniform limit of step functions) .

Remark 1.1. In [2], the following was proved: if X,S(x) and P(x)
are non-empty, convex and compact, if S is upper semicontinuous and
P is continuous, and if S(x) N T(P(x);x) # ¢ for all x € X, then
there exists a monotone invariant trajectory.

Remark 1. 2. If we neglect the monotonicity requirement (1.1) (iv), (i.e.
set P(x) = X for each x) a solution of (1.1) (i), (ii), (iii) is called an
invariant trajectory. When S is a continuous function, existence of
invariant trajectories was obtained by Nagumo [12], Crandall [7],
Martin [10], [11], Yorke [15], Hartman [9]; for S a Lipschitz function,
see Brezis [ 4], Bony [ 3], Redheffer [14]; for S a Lipschitz multi-
function see Clarke [ 5]. Theorem 1 implies the existence of (at least)
one invariant trajectory when S 1is a continuous multifunction; local
existence of the differential inclusion (1.1) (i), (ii) was proved by
Filippov [ 8]. We make use of the techniques introduced in this paper.
See also Antosiewicz-Cellina [1], Olech [13] and the references of the

latter paper.




2. Tangent Cones

L
We recall that any locally Lipschitz function f: R - R has a

generalized directional derivative, defined in [ 5], [ 6] by

0
(2.1) f (x;v) = lim sup[ f(y + ov) - f(y)]/0
Yy—+x
6—-0+
which is convex positively homogeneous and continuous with respect to v.
It coincides with (Vf(x),v) if f is continuously differentiable and with
the derivative from the right if f is convex and continuous. By definition,
1%
the generalized gradient 8f(x) of f at x is the set of p€R such that
0 . 4
P,V &'t ay) forall v in R .
0
It is a non-empty convex compact set whose support function is f (x;-).

Let X be a closed subset of R‘. The distance function

y ~ d(X;y) = inf ”y = z”, being a Lipschitz function, admits a
zeX

generalized directional derivative dO(X;y;v) and a generalized gradient
9d(X;y) at any point y. If y e X, we shall say that the normal cone

N(X;y) to X at y is the closed convex cone spanned by ad(X;y).

We define the tangent cone T(X;y) to X at y to be the (negative)
polar cone of N(X;y). Thus

(2.2) T(X;y) = {v € RI such that dO(X;y, v <0} .

If the interior int X of X is non-empty and if y ¢ int X, then

T(X;y) = Rl. When X is a closed convex set, or a smooth manifold,
these definitions coincide with the usual ones (see [ 5]). We recall the

following characterization of the tangent cone (see [ 5, p. 256]).




Proposition 1. A vector v belongs to T(X;y) if and only if

(2.3) lim lim inf d(X;z + \v)/A = 0 .
zeX N\ -0+
z-=y

This implies obviously that

(2. 4) lim inf d(X;y +\v)/A = 0,
A -0+

but this condition does not necessarily imply that v ¢ T(X;y).

Remark 2.1. It is easy to show from the above (see [ 5, Proposition 3.7])
that the tangent cone may be defined directly as follows: v belongs to
T(X;x) iff for every sequence {xn} in X converging to x and every
sequence {xn} of positive numbers converging to 0, there exists

a sequence {vn} converging to v such that xn + )‘nvn belongs to

X infinitely often.

1
Lemma 1. For any X, € X and Vg € R", there exist neighborhoods

t

N(xo) of Xy M(vo) of v_ and h(xo,v0)>0 such that

0
(2.5) d(%x + hv)/h <d’(Xx v,) + €

when x e N(xo), V€ M(vo) and 0<hg h(xo, vo).

Proof. Letus set g(t) = d(X;x +tv). Since g(0) = d(X;x) = 0 when
X € X, we can write

h

f g'(t)dt .
0

(2.6) d(X;x + hv)/h =

= -

[Indeed g, being a Lipschitz function of t, is differentiable almost

everywhere]. But we have




0
(277) g'(t) <d (X;x + tv;v)
since, if g is differentiable at t

g'(t) = lim [d(X;x + tv + 6v) - d(X;x + tv)]/6
00+

0
< lim sup [d(X;y + 6v) - d(X;y)]/0 =d (X;x + tv;v) .
y>X+tv
6—-0+

0
Since the function (y,v) = d (X;y;v) is obviously upper semicontinuous,

we can associate with any € >0, a neighborhood N(xo) of Xy M(vo)
of Yo and a number h(xo,vo) > 0 such that when X e N(xo),

vV € M(vo) and t Sh(xo,vo), then

(2.8) do(X;x + tv;v) < dO(X;xo;vo) £ie

The result then follows from this, combined with (2.7) and (2.6). Q.E.D.
Let a multifunction S from X to Rl be given. We shall now
consider various consequences of the hypothesis that S(x) is contained
in T(X;x) for each x (this is (l.3) in the case P(x) = X for each x;
the connection to Theorem 1 is made in Proposition 4 below). Besides
developing some machinery that will be needed in § 3, the relationships
between the various hypotheses made in the papers on invariant
trajectories cited above will be clarified (see Corollary 1).
Proposition 2. Let us assume that S is upper sem}‘ icontinuous and that
¥x e X, S(x) C T(X;x) .

Then the function




a(x,h) = sup d(X;x + hv)/h
v € S(x)

converges to 0 with h uniformly for x in compact subsets (h > 0).

Proof. Let K be a compact subset of X. Since S is upper semi-

continuous, the graph GK(S) of the restriction of S to K is compact.
Consequently, it can be covered by a finite number p of neighborhoods
N(xi) X M(Vi)’ where (xi, vi) € GK(S) and the neighborhoods N and

M have the properties of the preceding lemma. If we set h(K,g)

= min h(xi, vi), we deduce that
1=1,..-,D
¥x € K, ¥v € S(x), Yh <h(K, €), d(X;x + hv)/h <€ .
So the proposition is proved. Q. E. D.

£
For any yeR , let w(y) denote the set of closest points in X to y.

Proposition 3. If we assume that

(2.9) ¥x € X, Yv € §(x), lim inf d(X;x + hv)/h = 0,
h-0+

then

(2.10) Yy e Rl, ¥x e m(y), Vv e S(x), (y - x,v) <0.

Conversely, if we assume that S is lower semicontinuous property

(2.10) implies that S(x) € T(X;x) forall x € X.

Remark. There are examples where (2.10) does not imply (2.9).

Proof. Suppose that (2.10) is false. There exist y ¢ Rl, x € n(y) and
v € S(x) N T(X;x) suchthat (y=-x,v) >0. Let C be the complement

of the open ball of center y and radius d(X;y). Then




d(X;x + tv) > d(C;x +tv) and, since (y - x,v) >0, d(C;x + tv) > 6t + o(t)
where & >0. Hence lim inf d(X;x + 6v)/06 > 6 > 0; this contradicts
0-0+

the fact that v € T(X;x). Conversely, let us prove that if S is
continuous, then (2.10) implies that S(x) C T(X;x). By [5, p. 254],
we know that any element of N(X;x) can be written as a convex combina-

tion of elements = lim - >0 > X and
p nx . Sn(yn zn) where s 'y Yo a

Zn € n(yn). Since x ¢ X, we have ”x o Ay I = lIx - yn ” + ”yn -z l

<2 Ix - ¥ l. Since S is lower semicontinuous, any v e S(x) is

the limit of some sequence of elements e S(zn). So

(p,v) = lim s (¥, -z,v )<0. This implies that v ¢ N(X;x) = T(X;x). =
n - o

Corollary 1. Let us assume that

i) X is a compact set.
(2.11) ii) S 1is a continuous multifunction with non-empty

compact values.

Then the following statements are equivalent

(a) ¥x, S(x) C T(X;x)

(b) ¥x ¢ X, Yv e S(x), lim lim inf d(X;y + 6v)/6 = 0

y=-x 6-0+
yeX

(c) lim sup d(X;x + hv)/h = 0

h-0 xeX
v € S(x)

(d) ¥x e X, Vv e S(x), lim d(X;x + hv)/h = 0
h -0+

(e) ¥x € X, ¥v ¢ S(x), lim inf d(X;x + hv)/h = 0
h -0+

(f) Vy e Rl, ¥x e w(y), Yv € S§(x), (y - x,v) <0 .




Proof. That each condition implies the next, and that (f) implies (a),
is either self-evident or a consequence of the preceding results. (Gl e Bl
Remark 2.2. Conditions (a) and (b) are found in [ 5], while (d) appears
in[4], [7], [9], (e) in [14], [15], [12] and (f) in [ 3], [7].

Let us consider now another multifunction P mapping X into X.
Proposition 4. Let X be a compact subset of Rn.

Let us assume that S is a continuous multifunction with non-empty

compact values and that P is a closed multifunction satisfying (l.2).

If we assume

¥x e X, 8(x) C T(B(x);x) ,

then
lim sup d(G(P);(x,x + hv))/h = 0
h -0+ xeX
v € S(x)

where d(G(P);(+,-)) is the distance to the graph G(P) of P.

Proof. Let S : G(P) — RZI be the continuous multifunction defined as

§(x,w) = {0} x S(w) .
Let (x,w) be a pointin G(P), and let (0,v) belong to S(x,w).
We claim that

(2.12) lim inf d(G(P);(x,w + hv))/h = 0 .
h—-0+

To see this, note that since x belongs to P(x),

d(G(P);(x,w + hv)) < d(P(x);w + hv) .




Also, w ¢ P(x) implies P(w) C P(x), so thatin turn
d(P(x);w + hv) < d(P(w);w + hv) .
However,

lim inf d(P(w);w + hv)/h = 0
h-0+

by (2.4), since v € S(w)C T(P(w);w). Thus (2.12) ensues. We now
apply Corollary ! (with X replaced by G( P) and S by §) and deduce
that condition (c) of that result holds. But that implies the desired

result, since (x,x) ¢ G(P). Q. E.D.

-10-




3. Proof of the Theorem

By Proposition 4, we know that our assumptions imply that

b(h) = sup d(G(p)i(x,x + hv))/h
xeX
v e S(x)
converges to 0 with h. We will use this fact instead of assumption
(1. 3) in the proof of the theorem.
We consider a decreasing sequence of partitions P(hm) of
[0,T] made of intervals [qhm,(q 35 l)hm] where q is an integer

and where

h

(3.1) T/hl and %1‘ are integers .
m

We shall denote by Tm = qhm (where q € N) any node of the partition

P(hm). We shall construct a sequence of piecewise linear functions

X~ on the partition P(hm) defined by

(3. 2) Vt e [Tm’Tm + hm], xm(t) = xm(Tm) +(t - Tm)vm(Tm)

whose derivative km(t) is a step function:

(3.3) Vt e [Tm,Tm + hm[, Scm(t) o vm(Tm).

For that purpose, we define the map j : Tm - j(Tm) associating with

T
m

hj +1

any node Tm € P(hm) the smallest index j = j(Tm) such that

T

is an integer. [Indeed, if | <k <m is such that h_m is an integer,
k

T

then Em is also an integer if k <2 <m]. We also define the
1




map ¢ : rm - w(Tm) associating with any positive node Tm € P(hm)

the largest node ¢(Tm) of the partition P(hj(T )) strictly smaller
m

than Tm(if =101 ¢(Tm) = 0). We know that S(X) is compact (and

thus, contained in a ball of radius ¢ -1>0). Since S is uniformly

continuous, we can choose 6m such that
(3.4) Ix - yll < cém implies that S(y) C S(x) + emB ;

where we set Em = Z-m. We denote by L the Lipschitz constant of P:
P(y) € P(x) +Lllx - ylB .
We shall choose hm small enough in order that

hm < 6m’ 2(L + l)b(hm) < L

where

b(h) = sup d(G(P);(x,x + hv))/h .
(x, v) € G(S)

Construction of xm on [O,hm]. We consider Vo ¢ S(xo). By

definition of b(hm), there exist (y,z) ¢ G(P) such that
max( "xo - y“, ”xo + hmvo -2z ||) < 2b(hm)hm. Since P is Lipschitz,

then z ¢ P(y) C P(x.) + L”xo -yllBC P(x,) + 2Lb(h )h_B. Therefore,

0

there exists u ¢ P(x.) such that lz - ull < 2Lb(hm)hm and thus,

0

such that

+ v

m 0 _<_2(L+1)b(hm)5em &

If we define x_ on [O,Tm] by setting

xm(O) = X, and vm(O) -~

alP=




we obtain the properties
i) vm(O) € S(xo) + €
= e 0 de <
ii) ”vm( ) Y5 l < e
iii) xm(hm) =y e P(xo) .

Constructionof x  on [T ,7 +h_]. Let us assume that we have
m m m m

constructed xm on [O, ij satisfying, for any node crm<“r ;

m
i) vm(cm) 3 S(xm(om)) + €
(3.5) i) v (o) - vm(¢(cm))l| < Ze],<6m)
iii) xm(am + hm) € P(xm(am)) .
We shall construct xm on the interval [T i T ar hm] satisfying

m

properties (3.5) where e is replaced by A Let us set j = j(Tm) <m

and T, = (v ) <T . Sincethenode T, = o_ is also a node o
) m m j m m

of the partition P(hm), we know that, by (3.5) (i),

(3.6) vm(Tj) € S(xm('rj)) + e
"m
Furthermore, ”xm(fm) - xm(Tj) I < f ”vm(t) | at < c'fm - TJ.' < chj.

T :
)

We deduce from the uniform continuity of S that (see (3.4))

(3.7) s S(xm(fj)) o S(xm(rm)) + ejB -

Hence there exists w ¢ S(xm(Tm)) such that

(3.8) llvm(fj) ~wll Se e

-] B




Now, by definition of b(hm), there exists (y,z) ¢ G(P) such that

(3.9) max( IIxm<rm) - yll, ”xm(fm) +h w- zll) < 2b(h _)h

Therefore, since P 1is Lipschitz, we deduce that

(3.10) z ¢ P(y) C P(x (7)) + L”xm(Tm) -ylB.

Then, there exists u e P(xm(Tm)) such that

lz - ull < Lllxm(fm) -yl < 2Lb(h_)h _

and thus, such that
xm(Tm) o

h
m

+w| <2(L+ l)b(hm) e -

If we set

: b= x (1 )
(3.10) vm('rm) = h
m

we thus have shown that v (v ) ew+¢& BC S(x (v _)) +¢&_ B, that
: m' m m m' m m

“vm(Tj) - vm(Tm)“ L ||vm(Tj) ~wll + llw- vm(Tm) I < g t2e < Ze}.
(since j <m) and that u = xm(Tm + hm) € P(xm(Tm)). So X is

constructed on '[xm,xm + Tm] and satisfies properties (3.5) with

Convergence of the sequence of approximate solutions. We shall prove

now that the sequence {Scm} is totally bounded in the space £#(0, T;Rl)

2
of bounded functions from [O,T] into R . Let ek be fixed. Since

S(X) is compact, it can be covered by p balls uj + ekB where

uj € S(X). Let us consider any interval [Tk, Te + hk[ of the partition

=l




P(hk). There exists uk such that
j

-’

k .
(3.11) “uj - xm(Tk) I gek .

If m<k, km(t) = x (t,) is constant on this interval. Let m >k and

m k

t e [Tk, L hk[ . Then we shall prove that

Ils(mm - *m(’k) Il < ge, .

Indeed, there exists a node T P(hm) such that

te[rm,Tm+hm[C[T Tk+hk[, If Tm:T then X (t):g'( (t.).

k’ k’ m m k

) § ) e < then there exists

k  'm’ = J(Tm) such that k <j <m and

2

iy
T = d»(‘fm) <t . If k <j(7m), then there exists j, = j Tm) such

that k < jz < j1 and T < q,z(rm) < q,(rm) < P Proceeding in this way,

1
we can eventually write Tk =y (Tm) where £ <m - k. Hence, since
: . 2 ; A ;
xm(t) = vm(Tm) and (xm('rk) = vm(ub (Tm)), inequalities (3.11) imply that
(3.12) ”;(m(t) - ;(m(Tk) Il < 2(&:k + € +°°: +¢e ) <d4e

k+l m Je ~
So, we deduce from (3.11) and (3.12) that for any m, for any

t e [Tk’Tk + hk'], we have

. k
3 - < "
(3.13) ”xm(t) u | < 5e,
This implies that for any ek, each function :'cm(t) is in a ball of
radius Sek whose center is a step function um such that um(t) = u;(

if te[r ,7 +h[. Since there is a finite number (p ‘L) of such
| ] - k hk
step functions we have proved that the sequence of derivatives ;(m

is totally bounded.

-]5=~




Consequently, we can extract a subsequence (still denoted by)

B !
xm converging uniformly to a function v € B0, T;R ). Since
t
x (1) = x_ + [ x _(7)dv, the sequence x_ converges uniformly to
m 0 0 m m

a continuous function x such that
t
x(t) = x_ + f v(t)dt .
¥ %

Therefore, for any t ¢ [0,T], x(t) and v(t) are respectively the
limits of sequences xm(Tm) and xm(Tm) & vm(Tm). So, by the upper

semicontinuity of S, we deduce that

£

v < xr )+ S

BC S(x_ (7)) + %B C S(x(t)) + eB

when m is large enough. Hence v(t) = x(t) € S(x(t)). Furthermore,
x(t) ¢ X. Finally, property (1.2) (ii) of P, combined with (3.5) (iii),
implies that in any of our partitions, larger nodes are better than smaller
ones. We deduce from this that £(x(t)) € P(x(s)) when t > s.

Thus we have proved the existence of a monotone trajectory. Q.E.D.
Remark 3.1. The above proof remains valid when X is a compact

subset of a Banach space U, S is a continuous multifunction

from X into U with non-empty compact images, P a Lipschitz
multifunction from X into X satisfying (l.2) with non-empty compact
images and b(h) converges to 0 with h; under these assumptions,
there exists a regulated monotone invariant trajectory satisfying x(0) = X,

and x(0) = Vo ¢ S(xo).

-lbe




Remark 3.2. We can generalize Theorem | to the case of tiilne-dependent
systems, by assuming that the multifunctions S:[0,T|xX - U and

P:[0,T] x X + X are continuous, that for any t, x = P(t, x) is Lipschitz and
satisfies (1.2), and that 8(t,x) € T(P(t, x);x) for any (t,x) ¢ [0, T] XxX. The above
proof then needs no modifications. By using techniques of Olech [13],

the case where t+ S(t,x) is measurable for any x ¢ X and where

x + S(t, x) is continuous for almost all t can also be treated.

Remark 3.3. We can consider also the case where X 1is no longer

compact, but closed. Let the intersection of X with the ball of center

x_ and radius d be denoted X and associate with d the scalar

0 d’

c(d) = sup vl +1 .
XeXd

v e S(X)
it is easy to check that the approximate solutions xm satisfying (3. 5)
remain in Xd whenever t < T(d) = d/c(d). Therefore, by replacing X

by Xd in the proof of Theorem 1, we obtain the existence of a monotone

trajectory which remains in X, when t < T(d).

d
Remark 3.4. If the images S(x) are convex, we can replace assumption
(1. 3) by

(3.14) a(h) = sup inf d(G(P);(x,x +hv))/h -0 as hi 0.
xeX veS(x)

We can prove that (3.14) holds whenever we assume

(3.15) ¥x ¢ X, S(x) N T(P(x);x) # ¢ (cf. remark 1.1) .

=]l
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